
pALPIDEfs software - Installation and command

line interface

Markus Keil

rev. 1, July 3, 2014

This manual is intended as a quick start guide to get the pALPIDE software
installed and perform the most important tests via the command line interface.
It does not (yet) contain a detailed overview of the software structure or in-
structions for more specialised tests that require code changes. Nonetheless the
tests described here should be sufficient to perform a complete test of the chip
functionality.

1 Installation

The software is available on a git repository:

https://git.cern.ch/web/pALPIDEfs-software.git

Versions are updated regularly, make sure you have checked out the latest
version. The repository contains four subdirectories:

• pALPIDEfs-software: The main software package with the low-level driver
as well as test routines.

• crystalball: a lean standalone tool to configure the chip and read events.

• FPGA: a script to download the firmware to the FPGA.

• FX3: the configuration file for the FX3 chip as well as a tool to download
it to the chip.

In order to compile the software you need to have libusb installed. If not
yet installed, download and install version 1.0 from http://www.libusb.org.
Once this is done you should be able to compile both the software (execute make
in the directory pALPIDEfs-software) and the tool to configure the FX3 chip
(execute build mac.sh or build linux.sh, resp., in the directory fx3).

If compilation fails this is most likely due to the installation path of the
libusb package. In that case you need to locate the path of the header and
library file on your system and modify the makefile / scripts accordingly.

1



2 Getting Started

After installation of the software you should be able to start testing with two
simple steps:

1. Configure FX3 chip: This needs to be done after each power-cycle of the
board and each reconfiguration of the FPGA. In order to download the
configuration file to the FX3 chip you should go to the directory fx3 and
execute

./download_fx3 -t RAM -i SlaveFifoSync.img

Upon successful execution you should see the message

FX3 firmware programming to RAM completed

2. Start the program: The test program is started by executing runTest in
the directory pALPIDEfs-software. The executed test is determined by
the command line parameters passed to the program (see below).

3 Tests

The set of tests described in the following are a very first attempt to provide a
comprehensive set of tests to qualify the pALPIDEfs-chip without having to dig
deep into the software. The set of tests and even input parameters and output
data format are therefore bound to change in the following weeks. Therefore
please check for a newest version of the manual and the software frequently.

A list of the available tests and their syntax can be obtained from the com-
mand line by executing the program without any parameters (./runTest).

Each test is preceded by a powering-on and configuration of the chip. After
each of the two steps the current consumptions (and the NTC temperature)
are measured and printed on screen. After each test the chip is powered down
(Note that this is not the case if the program crashes / is interrupted).

For tests that write output data you have to create a subdirectory Data

under the working directory. All data files will be written there.

3.1 FIFO Test

The FIFO test is a quick test to check the JTAG communication with the chip.
It writes three different bit patterns (0x0000, 0xffff and 0x5555) into each
cell of the end-of-column FIFOs, reads them back and checks the correctness of
the readback value. The test is started by passing the parameter FIFO to the
program:

./runTest FIFO

2



3.2 On-chip DAC Test

The output of the on-chip DACs can be connected to monitoring pins of the
pALPIDE chip and measured by ADCs on the DAQ board. The READDAC test
loops over all chip DACs, measures their output once and prints the measured
values to screen:

./runTest READDACS

In order to measure the full DAC characteristics the SCANDACS test can be
used:

./runTest SCANDACS

For each DAC it loops over the values from 0 to 255 and measures the output
values. The measured values are written into a file for each DAC.

3.3 Digital Scan

The digital scan generates a digital pulse in a number of pixels and reads the
hits out. It is started with two parameters

./runTest SCANDIGITAL PAR1 PAR2

where PAR1 is the number of injections per pixel, PAR2 the number of mask
stages. E.g. ./runTest DIGITAL 50 160 will test 1% of the pixels (cf. box),
doing 50 digital injections into each.

The output data is written into a file DigitalScan.dat, each line has the
format

Doublecol Address NHits

with Doublecol ranging from 0 to 511, Address from 0 to 1023 (Address is
the address as described in the pALPIDEfs manual, not the row number).

General remarks on scans:

• Mask stages: All injection-based scans (digital, analogue and threshold)
work on a certain number of pixels at a time. In the current implemen-
tation this is one pixel in each of the 32 regions, starting from address 0
in the first double column of each region. After the required number of
injections has been done the scan moves to the next set of pixels. In order
to scan the entire chip the mask has to be staged 1024 * 16 times, 164
mask stages correspond to approximately 1% of the chip.

• Output files: due to the large amount of data in particular for threshold
scans, output data is written only for pixels with > 0 hits.

3



3.4 Analogue Scan

The analogue scan works similar to the digital scan, however instead of gener-
ating a digital pulse after the discriminator, a programmable charge is injected
into the preamplifier. The scan therefore requires an additional parameter:

./runTest SCANANALOGUE PAR1 PAR2 PAR3

with PAR1 being the charge in DAC units1, PAR2 the number of injections per
pixel and PAR3 the number of mask stages. The output file format is identical
to the one of the digital scan (filename AnalogueScan.dat).

3.5 Threshold Scan

The threshold scan performs analogue injections, looping over the charge. For
each charge point 50 injections are performed. The command is

./runTest THRESHOLD PAR1 PAR2 PAR3

with the number of mask stages PAR1 and the charge loop ranging from PAR2

to PAR3 (both in DAC units). The output file ThresholdScan.dat contains the
raw data, i.e. the number of hits for each charge point, in the format

Doublecol Address Charge NHits

3.6 Noise Occupancy

The scan gives a selectable number of random triggers and returns the number
of hits. The command is

./runTest NOISEOCC PAR1

with the only parameter being the number of triggers. The hitmap is written
into a file NoiseOccupancy.dat in a format identical to digital and analogue
scan.

3.7 Source Scan

The source scan option does the same as the noise occupancy measurement,
but with a longer STROBEB to increase the probability to see source hits with
random trigger. The command is

./runTest SOURCE PAR1 [PAR2]

The first parameter is the number of events, the second an optional mask file
name. Hits are written into a file SourceScan.dat (same format as above).

1Preliminary calibration: 7 electrons / DAC unit

4



3.8 Noise Mask

This scan prepares a noise mask that can be used in the source scan. The scan
is started by the command

./runTest NOISEMASK PAR1 PAR2

The scan will issue PAR1 triggers and write all pixels that had one or more hits
into an output file with name PAR2. This file can directly be used as PAR2 of
the source scan.

5


